

Current Pedestrian AEB systems are ineffective at night

1.4M

people killed in road accidents every year 75%

Of VRU fatalities occur in degraded visibility conditions

Avoiding the loss of lives comes first, convenience of self driving is next

Imagine being involved or one of your loved ones ...

umicore

It starts with the sensors we have

Common sensor scenario today for PAEB

Tesla Vision HW3.0 for PAEB, no more RADAR

Thermal imaging improves detection significantly

Thermal imaging is now affordable for PAEB

Make it affordable: choose the right sensor size

Sensor size is similar to visible, pixel pitch is quite different

How much resolution is needed?

DRI versus DORI standards compared

Thermal camera
Detection of a VRU
with high confidence
Identification difficult

Visible camera

Detection of a VRU difficult
Identification with high confidence

A thermal camera requires x10 less pixels to detect a human

	Thermal: DRI of humar	ORI of human -4: 2015 for VIS/NIR security cameras)
Detection	2 PPM → Something is there	25 PPM → human presence
Recognition	6 PPM → A person is there	125 PPM → Who is the human
Identification	12 PPM → The person is a civilian	250 PPM → Identification beyond doubt

Make it affordable: Choose the right pixel pitch

Smaller pixel pitch is lower cost, but could impact optics design

Nr of QVGA detector dies in an 8" wafer (estimate)

Impact on sensitivity? : NETD

(40 < NETD < 50 mK)

Impact on response time?: τ_{th} \rightarrow not a critical factor for this application

 $(10 < \tau_{th} < 16 \text{ ms})$

Optimizing lens design to balance performance and cost Impact of smaller sensor size

As the focal length is proportional to the sensor size, a smaller sensor implies a shorter focal length → smaller optics

$$Field of \ View \approx \frac{Sensor \ width}{Focal \ length}$$

VGA 12µm → 8,5µm pixel pitch

Simple scale down of optics*

Focal length 8.8mm → 6.3mm

Optimizing lens design to balance performance and cost Impact on Sensitivity? ½ pixel size → ¼ amount of light

4 x the light $\rightarrow \frac{1}{2}$ the f-number (N) \rightarrow 2x size of the optics

Collected light
$$\propto \text{pitch}^2$$

 $\propto 1/(f - number)^2$

$$\begin{array}{ll} Diameter\ of\ lens\\ entrance\ pupil \end{array} = \frac{focal\ length}{f-number}$$

Luckily, the design of the pixel can be optimized to limit NETD impact

For the PAEB application, impact of smaller pixels on NETD is not causing a significant penalty on the cost of the optics.

Optimizing lens design to balance performance and cost Resolution of thermal imaging system is diffraction limited

A balanced design of sensor and optics makes an affordable thermal camera possible as part of a PAEB sensor system.

Rayleigh criterion for $\lambda = 10 \mu m$ N = f/1.0 $R_{Airy\ Disk} \approx 1.22 \times \lambda \times N$ $\approx 12 \mu m$

NHTSA new PAEB test parameters

Affordable thermal camera meeting new NHTSA standard

Scenarios	Crossing from right	Stationary on road	Moving along road
Vehicle speed	10 – 60 km/h	10 – 60 km/h	10 – 65 km/h
Available light		≤ 0.2 lux	
VRU	Adult only		
Recommended Deceleration	0,5g (~4.9m/s ²)		

	Low speed - HFOV max		High speed - range max	
Test	HFOV	Range	HFOV	Range
Crossing path Adult – AEB		5.6 m		46.8 m
Stationary Adult-AEB	≤ 47.5°	3.4 m	≥ 10.4°	40.7 m
Longitudinal Adult-AEB		3.4 m		31.8 m

Conclusion: a <\$100 thermal camera for PAEB is here!

Specification*		Value
Target	Surface (side view)	$0.8m^{2}$
Atmospheric conditions		No attenuation
Detector	Horizontal resolution	320 – 400 pixels
	Pixel pitch	8,5µm
Optics	FOV	37°
	Focal length	4.1 mm
	F-number	1.0
Range with recognition 90%		>50m

Crossing path Adult - AEB Stationary Adult-AEB

^{*}Simulation, feasibility and cost analysis by Quentin Noir, Lynred and Raphaël Proux, Bendix De Meulemeester, Umicore

Umicore is a leading Circular materials technology company

Unique business model

INTERNAL DRIVER

Supportive megatrends

EXTERNAL DRIVER

Employees 11,565

R&D spend
€ 245 m

€ 1.2 bn € 245 m

Lighting Up the Dark

Visit us at booth #40 todaynecessity.com

Scan to register for the Umicore Lynred Sekurit Rooftop event @ the Sofitel tonight at 19u30 Bendix De Meulemeester

Bendix.demeulemeester@umicore.com Director Marketing & Business Development

Umicore Electro-Optic Materials